Major changes between SWAP 3.2 and SWAP 3.03

No	Description	Input changed?
1	Upgrade of Penman – Monteith calculation procedure	No
2	Adaptation of Astro routine to enable Penman – Monteith calculations north	
	of the polar circle	
3	Handling of detailed rainfall records and detailed rainfall duration records	
4	Evaporation from ponding layer implemented	
5	Introduction of option for checking irrigation criteria at user defined time	
	events. Time events are specified by a fixed interval	
6	Snow / frost descriptions and implementation improved	
7	Interpolation procedure in root extraction routine improved	
8	Possibility to define the bottom boundary condition by a tabulated discharge	Switch SWQHBOT
	– groundwater level relationship	should be specified
9	Handling of a predefined groundwater level time series as bottom boundary	No
	condition is more accurately implemented. Mismatch of inserted and used	
10	time events solved	
10	Switch from flux –controlled bottom boundary to free drainage condition in	
	houndary conditions	
11	Ontional implicit treatment of Cauchy bottom boundary condition in	SwBoth3Impl
	numerical solution procedure	Swboto5iiipi
12	Implicit handling of the upper boundary by setting a flux or head controlled	No
12	upper boundary condition within the iteration – loop: disabling the	110
	beforehand estimation of upper boundary flux	
13	Taking account of interflow volume in upper groundwater system for	No
	calculation of lateral drainage sink term	
14	Introduction of upper boundary for lateral drainage fluxes as a function of	
	drain depth and actual groundwater level	
15	Several changes and bug fixes in Macro – pores option, implicit treatment of	
	matrix – macro pore exchange fluxes in the numerical solution procedure	
16	Introduction of air entry pressure head value and adjustment of water	h_entry should be
	retention curve at near saturation	specified
17	User defined method of internodal conductivity calculation	SWKMEAN should
		be specified
18	Major changes of numerical solution scheme; introduction of Newton –	MaxIt and
	Raphson iteration scheme with back tracking. Replacing the fixed maximum	MaxBack Ir should
	number of iterations by a user defined number.	be defined
10	Additional matrix solver implemented for numerical singularity events	
19	built density and Freundhen sorption parameters to be specified per natural	
20	Sull layer Time control routine improved	
20	Format changes of dwb_wba_ inc_ crn_drf_tem_irg_snw_and von	No
2 I	output files	
22	Version control of source code improved	
$\frac{22}{23}$	Standard output of soil physical and soil heat parameters	
24	Output of transpiration stress due to wet, dry, saline or frozen conditions	